More Minds-on Activities for Teaching Biology

This website offers:

  • multiple minds-on analysis and discussion activities for teaching biology to high school students (and also middle school students and students in college non-major biology courses)
  • overviews of important biological topics, including major concepts, common misconceptions, and recommended learning activitiesto help students overcome common misconceptions and develop a genuine solid understanding of important biological concepts
  • games for learning and review.

Our companion website (http://serendip.brynmawr.edu/sci_edu/waldron/) offers:

  • multiple hands-on, minds on activities for teaching biology to high school and middle school students

The topics covered include      biological molecules,        cellular respiration and photosynthesis,        cell structure and function,                             cell division,      genetics,                        molecular biology,                           ecology and evolution                            and  human health, biological concepts, and scientific method

Many of these activities are aligned with the Next Generation Science Standards, as described in Summary Tables and in the Teacher Notes for individual activities. As recommended, these activities foster student understanding of Disciplinary Core Ideas, engage students in Scientific Practices, provide the opportunity to discuss Crosscutting Concepts, and prepare students to meet the Performance Expectations of the Next Generation Science Standards. 

The Student Handouts for these minds-on analysis and discussion activities challenge students to actively develop their understanding of biological concepts using logical inference and the application of concepts to the interpretation of real-world situations and experimental and observational data. We provide Word files so you can easily modify the Student Handout to best meet the needs of your students. The Teacher Notes provide learning goals, suggestions for teaching the activity, relevant scientific background, and suggestions for introductory and follow-up activities.

These activities are designed for use in high school biology courses, but some of them could easily be adapted for use in a middle school classroom and others could easily be adapted for use in a college non-majors biology course. We encourage you to modify these activities to best meet the needs of your students, and we invite your feedback and comments.

Authors: Dr. Ingrid Waldron is Professor Emerita in the Biology Department at the University of Pennsylvania. Co-authors include Dr. Jennifer Doherty, a post-doctoral researcher of science education at Michigan State University, and Dr. Lori Spindler, a lecturer at the University of Pennsylvania. They have developed these activities in collaboration with colleagues at Penn and 6-12 teachers in the Philadelphia area. 

Subscribe to our listserv to receive notices when we post new activities or significant revisions.

Biological Molecules

 Understanding the Functions of Proteins and DNA (revised 9/2013)

This overview provides a sequence of learning activities to help students understand that proteins and DNA are not just abstract concepts in biology textbooks, but rather crucial components of our bodies that affect functions and characteristics that students are familiar with. Students learn about how proteins contribute to the digestion of food and to characteristics such as albinism, sickle cell anemia and hemophilia. Then, students learn about the relationship between the genetic information in DNA and the different versions of these proteins. The discussion, web-based, and hands-on learning activities presented are appropriate for an introductory unit on biological molecules or as an introduction to a unit on molecular biology. 

Download Teacher Notes and View Comments

Macromolecules Jeopardy

This game reviews introductory chemistry, including organic compounds and chemical reactions.

Download Game and View Comments 

Cellular Respiration and Photosynthesis

 Cellular Respiration and Photosynthesis – Important Concepts, Common Misconceptions, and Learning Activities (revised 6/2014)

This overview of energy, cellular respiration, and photosynthesis summarizes important concepts and common misconceptions and also suggests a sequence of learning activities designed to develop student understanding of these important concepts, overcome any misconceptions, and relate basic concepts to familiar topics such as food, body weight, and plant growth.

Download Teacher Notes and View Comments

How Do Biological Organisms Use Energy? (revised 6/2014)

This analysis and discussion activity is designed to help students understand the basic principles of how biological organisms use energy, with a focus on the roles of ATP and cellular respiration. This activity provides a useful basic understanding of cellular respiration and provides an important conceptual framework for students who will be learning the complex specifics of cellular respiration. This activity concludes with a brief introduction to two important principles: conservation of energy and the inefficiency of energy transformations. 

Download Student Handout, Teacher Notes and View comments  

Using Models to Understand Photosynthesis (new 6/2014)

In this analysis and discussion activity, students develop their understanding of the basic process of photosynthesis and also analyze the advantages and disadvantages of different types of models of photosynthesis, including chemical equations, a chart and a diagram. In addition, students analyze how photosynthesis and cellular respiration work together to provide the ATP that plants need to carry out their molecular and cellular processes.

Download Student Handout, Teacher Notes and View Comments

Cellular Respiration and Breathing (revised 5/2011)

The questions in this worksheet/discussion activity help students understand the relationship between cellular respiration, O2, CO2, and breathing.

Download Student Handout, Teacher Notes and View comments

Food, Energy and Body Weight (revised 6/2014)

This analysis and discussion activity reinforces student understanding of cellular respiration and helps students to understand the relationships between food, energy, physical activity, and changes in body weight.   

Download Student Handout, Teacher Notes, and View comments

Where Does a Plant’s Mass Come From? (revised 6/2014)

This analysis and discussion activity helps students to understand that a large part of a plant’s mass consists of water, most of the biomass comes from carbon dioxide, and minerals from the soil contribute only a tiny amount of the plant’s mass. This activity engages students in analyzing and interpreting data and arguing from evidence. 

 

Download Student Handout, Teacher Notes, and View Comments

Plant Growth Puzzle (revised 6/2014)

This analysis and discussion activity presents a structured sequence of questions to challenge students to explain why a plant that sprouts and grows in the light weighs more than the seed it came from, whereas a plant that sprouts and grows in the dark weighs less than the seed it came from.  

Download Student Handout, Teacher Notes, and View Comment

Photosynthesis and Cellular Respiration (revised 3/2011)

Students use puzzle pieces representing the components of the equations for photosynthesis and aerobic cellular respiration and answer questions about these processes. 

Download Student Handout and View Comments

 

Cell Structure and Function

Cell Structure and Function -- Major Concepts and Learning Activities (revised 10/2013)

This overview presents key concepts that students often do not learn from standard textbook presentations and suggests a sequence of learning activities to help students understand how the parts of a cell work together to accomplish the multiple functions of a dynamic living cell.  Suggested activities also reinforce student understanding of the relationships between molecules, organelles and cells, the diversity of cell structure and function, and the importance and limitations of diffusion. This overview provides links to web resources, hands-on activities, and discussion activities.

 Download Overview with Key Concepts and Learning Activities and View Comments

Cells as Molecular Factories (revised 10/2011)

 This analysis and discussion activity reviews how eukaryotic cells are molecular factories in two senses: cells produce molecules and cells are made up of molecules.  The questions guide students to think about how the different parts of a eukaryotic cell cooperate to function as a protein-producing factory and as a recycling plant.  Additional questions require students to identify the locations and functions of different types of molecules in eukaryotic cells.

Download Student Handout, Teacher Notes and View Comments

Understanding Osmosis (new 10/2013)

The three parts of this activity can be used as a coordinated sequence to develop student understanding of osmosis or you can use each part separately (provided your students have the needed background specified for each section below). "Introduction to Osmosis" presents a series of questions that guide students in understanding the basic process of osmosis and relevant vocabulary. "Demonstration of Osmosis Using Chicken Eggs" can be used as a classroom demonstration or a hands-on student activity, with questions to guide students in understanding the changes in volume and appearance of the eggs. "Challenge Questions" presents questions which challenge students to apply their understanding of osmosis to interpret phenomena observed in halophilic archaea, freshwater plants, and humans.

Download Student Handout, Teacher Notes and View Comments

Diffusion and Cell Size and Shape (new 7/2011)

 This analysis and discussion activity helps students understand that cell size is limited by the very slow rate of diffusion over any substantial distance and the insufficient surface-area-to-volume ratio for larger cells.  In addition, students calculate why these problems do not apply to long slender cells or parts of cells (e.g. the axons of neurons that extend from your spinal cord to your foot).

Download Student Handout, Teacher Notes and View Comments

Diversity of Cell Structure and Function (new 7/2011)

The questions in this analysis and discussion activity enhance student understanding of the similarities and differences between eukaryotic and prokaryotic cells, the relationship between structure and function in different types of eukaryotic cells, the functions of the various organelles, and the relationships between molecules, organelles and cells.

Download Student Handout, Teacher Notes and View Comments

Cell Vocabulary Review Game (new 7/2011)

This game helps students to enjoy reviewing vocabulary related to cells, organelles, and the plasma membrane.  Each card in the deck has a target vocabulary word and two related taboo words that the student may not use as he/she gives clues so the other students in his/her small group can guess the target word.  Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms. 

Download Game and Teacher Notes and View Comments

 

Cell Division 

Mitosis, Meiosis and Fertilization -- Major Concepts, Common Misconceptions and Learning Activities (revised 8/2012)

These teacher notes summarize important concepts concerning mitosis and meiosis and propose a sequence of learning activities that will help students understand and learn these concepts and progress beyond common misconceptions. Students also learn how understanding meiosis and fertilization provides the basis for understanding how inheritance occurs.  Links to suggested activities are provided, including a hands-on simulation of mitosis, meiosis and fertilization, a card sort activity, a discussion activity about the effects of mistakes in meiosis, and a vocabulary review game.

Download Teacher Notes and View Comments

How Mistakes in Cell Division Can Result in Down Syndrome and Miscarriages (new 8/2012)

This analysis and discussion activity reinforces student understanding of the process of meiosis and the importance of having exactly the right number of copies of each chromosome in our body's cells. This activity also helps students to understand that miscarriages are often the result of genetic abnormalities and that genetic conditions sometimes are not inherited (e.g. Down syndrome due to meiotic nondisjunction). Optional additional questions can be used to promote student understanding of sex chromosome abnormalities and X chromosome inactivation. 

Download Student Handout and Teacher Notes and View Comments

Mitosis and Meiosis Card Sort Activity

This activity is designed to help students review the processes of mitosis and meiosis and to ensure that students understand how chromosomes move during mitosis vs. meiosis.  Students arrange the cards from a shuffled deck of the stages of mitosis and meiosis in the sequence of steps that occur during cell division by mitosis and another sequence of steps that occur during cell division by meiosis.

Download Card Sort Activity and Teacher Notes and View Comments

Mitosis, Meiosis and Fertilization Vocabulary Review Game

This game helps students to enjoy reviewing vocabulary related to mitosis, meiosis and fertilization.  Each card in the deck has a target vocabulary word and two related taboo words that the student may not use as he/she gives clues so the other students in his/her small group can guess the target word.  Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms. 

Download Game and Teacher Notes and View Comments

 Genetics 

Genetics – Major Concepts and Learning Activities (revised 11/2013)

This overview summarizes important genetic concepts and provides links to suggested learning activities. Part I provides an outline of key concepts needed to understand how genes are transmitted from parents to offspring and how genes influence phenotypic characteristics and a learning activity to develop student understanding of these key concepts. Part II presents learning activities that support the Next Generation Science Standards, including Disciplinary Core Ideas related to inheritance and variation of traits and Scientific Practices.

Download Teacher Notes and View Comments

Soap Opera Genetics - Genetics to Resolve Family Arguments (revised 12/2013)

This minds-on analysis and discussion activity contains four episodes that can be used to reinforce understanding of principles of genetics and the relevance of genetics to everyday life. Each episode focuses on important genetics concepts, including Punnett squares, co-dominance, incomplete dominance, sex-linked inheritance, test cross, polygenic inheritance, and the interacting effects of genes and the environment on phenotypic characteristics. You can use all four episodes or just the specific episodes that help students understand the specific topics you want to teach.

Download Student Handout and Teacher Notes and View Comments

This Genetic Condition Was Not Inherited

This analysis and discussion activity guides students to think about how mutations and meiotic nondisjunction can result in genetic conditions that are not inherited (most cases of achondroplasia and Down syndrome, respectively). 

Download Student Handout and Teacher Notes and View Comments

Should states repeal their laws banning first cousin marriage? -- Effects of first cousin marriage on health risks for their children (revised 8/2012)

This minds-on analysis and discussion activity challenges students to analyze which types of genetic conditions will be more common among children of first cousin marriage and to use evidence concerning the magnitude of observed health effects to evaluate whether laws banning first cousin marriage in 25 states should be repealed.  

Download Student Handout and Teacher Notes and View Comments

Genetics Web Search Activity

This web search activity provides instructions and recommended sources to investigate genetic conditions and diseases.

Download Student Handout and Teacher Notes and View Comments

Genetics Vocabulary Review Game

This game helps students to enjoy reviewing vocabulary related to genetics.  Each card in the deck has a target vocabulary word and two related taboo words that the student may not use as he/she gives clues so the other students in his/her small group can guess the target word.  Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms. 

Download Game and Teacher Notes and View Comments

Genetics Review Jeopardy Game

This game reviews genetics, with 25 questions of varying levels of difficulty.

Download Game and View Comments

 Molecular Biology

Molecular Biology: Major Concepts and Learning Activities  (revised 2/2014)

This overview reviews key concepts and learning activities to help students understand how genes influence our traits by molecular processes.  Topics covered include basic understanding of the important roles of proteins and DNA; DNA structure, function and replication; the molecular biology of how genes influence traits, including transcription and translation; the molecular biology of mutations; and genetic engineering.  To help students understand the relevance of these molecular processes, the suggested learning activities link alleles of specific genes to human characteristics such as albinism, sickle cell anemia and muscular dystrophy. Suggested activities include hands-on laboratory and simulation activities, web-based simulations, discussion activities and a vocabulary review game.

Download Teacher Notes and View Comments

DNA (new 10/2011)

This analysis and discussion activity can be used to introduce your students to DNA structure and replication or to review these topics.  The first version of the Student Handout provides a review for students who are familiar with DNA structure and replication.  The second version of the Student Handout includes explanatory material and can be used to introduce students to the double helix structure of DNA and the process of replication. You may want to use this discussion activity together with the extraction of DNA from green split peas using the instructions available at http://learn.genetics.utah.edu/content/labs/extraction/howto/ (see Teacher Notes available at http://serendip.brynmawr.edu/sci_edu/waldron/#dna for additional advice on procedures for the extraction).

Download Student Handout and Teacher Notes and View Comments 

From Gene to Polypeptide -- The Roles of the Base-Pairing Rules and the Genetic Code  (new 10/2011)

The questions in this analysis and discussion activity reinforce student understanding of the information flow from a gene to a polypeptide, with an emphasis on understanding the roles of the base-pairing rules and the genetic code chart.

Download Student Handout and Teacher Notes and View Comments 

The Molecular Biology of Mutations and Muscular Dystrophy  (new 10/2011)

In this analysis and discussion activity students explore the effects of different types of point mutations and deletion mutations and analyze the reasons why deletion mutations generally have more severe effects than point mutations.  Students use their understanding of the molecular biology of mutations to analyze the genetic basis for the differences in severity of two types of muscular dystrophy.    

Download Student Handout and Teacher Notes and View Comments 

Molecular Biology Vocabulary Review Game (new 10/2011)

This game helps students to enjoy reviewing vocabulary related to DNA and RNA structure and function, transcription and translation. 

Download Game and View Comments

Genetic Engineering Challenge – How can scientists develop a type of rice that could prevent vitamin A deficiency? (new 2/2014)

This activity begins with an introduction to vitamin A deficiency, rice seeds, and genetic engineering. Next, several questions challenge students to design a basic plan that could produce a genetically engineered rice plant that makes rice grains that contain pro-vitamin A. Subsequent information and questions guide students in developing an understanding of the basic techniques of genetic engineering. Students use fundamental molecular biology concepts as they think about how to solve a practical problem. This activity can be used to introduce students to genetic engineering or to reinforce basic understanding of genetic engineering.

Download Student Handout and Teacher Notes and View Comments

Golden Rice – Evaluating the Pros and Cons (new 2/2014)

This activity engages students in evaluating the evidence and arguments related to Golden Rice and other possible strategies for preventing vitamin A deficiency. Students use this information to develop evidence-based conclusions about Golden Rice and the prevention of vitamin A deficiency. Students also develop questions that could provide important additional information for evaluating the arguments in favor of and opposed to Golden Rice and related policy proposals. In addition, students analyze how two reasonably accurate articles can present totally opposing points of view on this complex policy issue.

Download Student Handout and Teacher Notes and View Comments


Ecology and Evolution

The original activities in this section have been designed to help students meet Next Generation Science Standards and Common Core State Standards for high school students.

Population Growth – Exponential and Logistic Models vs. Complex Reality (revised 4/2014)

This analysis and discussion activity is designed to help students develop a solid understanding of the exponential and logistic models of population growth, including the biological processes that result in exponential or logistic population growth. Students learn about the simplifying assumptions built into the exponential and logistic models and explore how deviations from these assumptions can result in discrepancies between the predictions of these models and the actual trends in population size for natural populations. This activity is designed to help students meet the Next Generation Science Standards.

Download Student Handouts and Teacher Notes and view comments.

Resources for Teaching and Learning about Evolution (revised 8/2013)

This annotated compilation of some of the best resources for teaching and learning about evolution includes activities, videos and articles. The first section provides general and introductory resources, and the second section provides resources for understanding and analyzing the evidence.

Download these Teacher Notes and view comments.

How could complex eyes have evolved? (new 8/2013)

This analysis and discussion activity introduces students to evidence from comparative anatomy, mathematical modeling, and DNA analysis. This evidence suggests a sequence of steps that appear to have contributed to the evolution of the human eye. Questions in the Student Handout guide students in analyzing this evidence, evaluating whether the similarities between human and octopus eyes are due to convergent evolution and/or common descent with modification, and understanding the role of gene duplication in evolution. This activity is designed to help high school students meet the Next Generation Science Standards and the Common Core State Standards.

Download Student Handout and Teacher Notes and view comments.

Evolution and Adaptations (new 8/2013)

In common experience, the term "adapting" usually refers to changes during an organism's lifetime. In contrast, evolutionary biologists use the term "adaptation" to refer to a heritable trait that increases fitness. To help students reconcile these different concepts, this activity introduces the concept of phenotypic plasticity (the ability of an organism to adapt to different environments within its lifetime). Questions guide students in analyzing how the balance between the advantages and disadvantages of a characteristic (e.g. an animal’s color) can vary in different circumstances, how phenotypic plasticity can be a heritable trait that can optimize fitness in a variable environment, and how natural selection can influence the amount of phenotypic plasticity in a population. This activity is designed to help high school students meet the Next Generation Science Standards and the Common Core State Standards.

Download Student Handout and Teacher Notes and view comments.

Human Health, Biological Concepts, and Scientific Method

In these activities, as students learn about health-related topics, they also review and apply important aspects of basic biology (e.g. physiology, molecular, cellular and evolutionary biology in the sports drink, cancer and HIV activities). These health activities also engage students in important scientific practices, as recommended by A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (available at http://www.nap.edu/catalog.php?record_id=13165 ).

Using Molecular and Evolutionary Biology to Understand HIV/AIDS and Treatment (new 8/2012)

This analysis and discussion activity introduces students to the biology of HIV infection and treatment, including the molecular biology of the HIV virus lifecycle and the importance of understanding molecular biology and natural selection for developing effective treatments. The questions in this activity challenge students to apply their understanding of basic molecular and cellular biology and natural selection and interpret the information presented in prose and diagrams in order to understand multiple aspects of the biology of HIV/AIDS and treatment.

Download Student Handout and Teacher Notes and View Comments

Understanding the Biology of Cancer (new 8/2012)

This analysis and discussion activity introduces students to the molecular and cellular biology of cancer, including the important contributions of mutations in genes that code for proteins involved in regulating the rate of cell division. The questions in this activity challenge students to interpret the information presented in prose, tables and diagrams and apply their knowledge of basic molecular and cellular biology in order to understand multiple aspects of the biology of cancer, including the contributions of a variety of environmental exposures to increased risk for different types of cancer and the long lag between exposure to carcinogens and the diagnosis of cancer.

Download Student Handout and Teacher Notes and View Comments

Carbohydrate Consumption, Athletic Performance and Health – Using Science Process Skills to Understand the Evidence (new 11/2012)

This analysis and discussion activity is designed to develop students' understanding of the scientific process by having them design an experiment to test a hypothesis, compare their experimental design with the design of a research study that tested the same hypothesis, evaluate research evidence concerning two hypothesized effects of carbohydrate consumption, evaluate the pros and cons of experimental vs. observational research studies, and finally use what they have learned to revise a standard diagram of the scientific method to make it more accurate, complete and realistic. 

Download Student Handout and Teacher Notes and View Comments

Vitamins and Health – Why Experts Disagree (new 11/2012)

In this analysis and discussion activity, research concerning the health effects of vitamin E is used as a case study to help students understand why different research studies may find seemingly opposite results. Students learn useful approaches for evaluating and synthesizing conflicting research results, with a major focus on understanding the strengths and weaknesses of different types of studies (laboratory experiments, observational studies, and clinical trials). Students also learn that the results of any single study should be interpreted with caution, since results of similar studies vary (due to random variation and differences in specific study characteristics).

Download Student Handout and Teacher Notes and View Comments

Should You Drink Sports Drinks?  When?  Why? (revised 9/2013)

The questions in this activity help students to understand the effects of consuming sports drinks and when and how the consumption of sports drinks can be beneficial or harmful. This activity provides the opportunity to review some basic concepts related to osmosis, cellular respiration, mammalian temperature regulation, and how our different body systems cooperate to maintain homeostasis.

 Download Student Handout andTeacher Notes and View Comments

Sexual Health and Reproduction

This activity provides questions and Web sites to guide student investigation of birth control methods, fetal development, risks of alcohol and smoking during pregnancy, changes during puberty, and HIV/AIDS and other sexually transmitted diseases.

Download Student Handout, Teacher Notes and View Comments

Get the Lead Out

This board game reinforces learning about the sources and biological hazards of lead exposure.

Download Student Handout, Teacher Notes and View Comments

 

If you have any comments or would like additional information, please contact Ingrid Waldron at iwaldron@sas.upenn.edu.

Copyright, 2014 by Dr. Ingrid Waldron, Dr. Jennifer Doherty, and Dr. Lori Spindler, Department of Biology, University of Pennsylvania

Teachers are encouraged to copy and modify these activities for use in their teaching.

 

 

Comments

Serendip Visitor's picture

WOW!

Thanks for putting together this site. My colleague and I are re-vamping our grade 9 Biology curriculum to be skills based learning, and there are so many hands-on activities for learning we will be able to use. Brilliant!

Serendip Visitor's picture

using sight for teacher and student curriculum

I am viewing this sight for lesson plans that are more electronically friendly to the classroom.

iwaldron's picture

Web resources

The activities on this website have been designed for teachers whose students do not have easy classroom access to the web. There are many excellent web-based activities available. Examples of websites with useful activities that you may want to investigate are:

Ingrid

Nelly Celis's picture

biology resources

excellente all this material. thank you

Post new comment

The content of this field is kept private and will not be shown publicly.
randomness